Reconstruction of black hole metric perturbations from the Weyl curvature

نویسندگان

  • Carlos O. Lousto
  • Bernard F. Whiting
چکیده

Perturbation theory of rotating black holes is usually described in terms of Weyl scalars c4 and c0, which each satisfy Teukolsky’s complex master wave equation and respectively represent outgoing and ingoing radiation. On the other hand metric perturbations of a Kerr hole can be described in terms of ~Hertz-like! potentials C in outgoing or ingoing radiation gauges. In this paper we relate these potentials to what one actually computes in perturbation theory, i.e. c4 and c0. We explicitly construct these relations in the nonrotating limit, preparatory to devising a corresponding approach for building up the perturbed spacetime of a rotating black hole. We discuss the application of our procedure to second order perturbation theory and to the study of radiation reaction effects for a particle orbiting a massive black hole.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstruction of Black Hole Metric Perturbations from Weyl Curvature II: The Regge-Wheeler gauge

Abstract. Perturbation theory of rotating black holes is described in terms of the Weyl scalars ψ4 and ψ0; each satisfying the Teukolsky’s complex master wave equation with spin s = ∓2, and respectively representing outgoing and ingoing radiation. We explicitly construct the metric perturbations out of these Weyl scalars in the ReggeWheeler gauge in the nonrotating limit. We propose a generaliz...

متن کامل

Completion of metric reconstruction for a particle orbiting a Kerr black hole

Vacuum perturbations of the Kerr metric can be reconstructed from the corresponding perturbation in either of the two Weyl scalars ψ0 or ψ4, using a procedure described by Chrzanowski and others in the 1970s. More recent work, motivated within the context of self-force physics, extends the procedure to metric perturbations sourced by a particle in a bound geodesic orbit. However, the existing p...

متن کامل

Making use of geometrical invariants in black hole collisions

We consider curvature invariants in the context of black hole collision simulations. In particular, we propose a simple and elegant combination of the Weyl invariants I and J, the speciality index S. In the context of black hole perturbations S provides a measure of the size of the distortions from an ideal Kerr black hole spacetime. Explicit calculations in well-known examples of axisymmetric ...

متن کامل

On Special Generalized Douglas-Weyl Metrics

In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.

متن کامل

Generalized Douglas-Weyl Finsler Metrics

In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002